3.8. If a two-dimensional rectan i i
: gular crystal is bounded by sides of len 1
l,, show by differentiation that the equilibrium shape is given by B

h_y3
Lo y{Y .
where v}V and y§V are the surface energi i
rgies of sides /, and |/ i
(The area of the crystal h1, is constant.) | e

3.9. The figure below (from [29]) shows two palladium

_ articl i
strate viewed along (a) <100> and (b) <110>, ° TN

(a) Locate the origin (Wulff point) in both figures.

(b) Determine the ratio of the surface ene i
: Igy anisotropy for the {1
{110} surfaces relgtwe to the {111} surface by me:::m‘ing the {lcnogti:rg
vectors from the origin according to the construction in Figure 3.12.
(©) Eomm the ratio 7ﬁ"'?o,:’yﬁ‘,' 1) determined in part b with the same ratio
etermined by comparing the lengths of the {100} and {111} facets, and

by comparing the angular width of these facets wi
acets with respect t. v
How do your measurements com pare? pect to the origin,

SURFACE STRUCTURE

4.1. TERRACE-LEDGE-KINK MODEL OF SURFACES

It is useful to be able to visualize the atomic structures of surfaces and interfaces,
because many important phenomena such as the mechanisms and kinetics of crystal
nucleation and growth, adsorption and segregation to surfaces and even the defini-
tion of the surface depend directly on the atomic structure and atomic level defects
present at these interfaces. In this section, we develop an atomic description of crys-
tal surfaces, which we use to further understand the reason for cusps at certain crys-
tallographic orientations in the Wulff plot and to quantify phenomena such as sur-
face roughening (shown schematically in Figure 3.3, but only discussed in a
qualitative way). Again, it is important to remember that we are concerned with sol-
id-vapor interfaces (surfaces) in this chapter, but the ideas developed for the ter-
race-ledge-kink model here are equally applicable to solid-liquid and solid—solid
interfaces as we shall see later.

When we considered the formation of an {hkl} surface using the broken-bond
model in Chapter 3, we imagined that we created the surface by removing all of the
atoms whose centers lay on one side of a mathematical dividing plane with this ori-
entation located within the crystal. Since no atomic relaxations or rearrangements
were allowed to occur, the surface was ideal and there was no surface stress. This
led to atomic surfaces such as those shown in Figure 3.7. (An atlas of such surfaces
for f.c.c. and b.c.c. crystals has been published by Nicholas [18]. This is a useful ref-
erence for visualizing various {hkl} surfaces.) The {100} and {111} surfaces shown
in Figure 3.7a are atomically smooth and are referred to as singular, because singu-
larities or cusps often occur in the ySV plot at these orientations.

A surface that is only slightly different in orientation from one that is atomically
smooth consists mainly of flat regions called terraces with a system of widely
Spaced atomic steps or ledges. Such a surface is called vicinal. Figure 4.1a shows a
vicinal surface on an f.c.c. crystal that makes an angle of approximately 11° with re-

A
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Figure 4.1. (a) An ideal surface of an f.c.c. crystal vicinal to the (100) plane showing straight
monatonic steps or ledges. (b) An ideal vicinal surface to (100) with kinks in the ledges. From

(6].

spect to the (100) plane and where the ledges are atomically straight because the
axis of rotation is parallel to the close-packed [011] ledge direction [6]. In genera‘l,
the steps on a vicinal surface are not entirely straight, because the axis of rotat_ion is
at some angle to the close-packed [011] direction and kink§ must be present in the
ledges to accommodate the additional tilt, as shown in Figure 4.1b. The surface
shown in Figure 4.1b is known as a terrace-ledge-kink (TLK) model of a surface.
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For a monotonic solid, the kink site on a vicinal surface is particularly important,
because the removal of an atom from such a site to infinity regenerates another kink
site but otherwise leaves the crystal unaltered. The work required for such a process
thus corresponds to the binding energy per atom of the crystal. We shall make use of
this property of the kink site when discussing surface defects shortly. Kinks are of-
ten preferred sites of adsorption of impurities to surfaces.

It is possible to construct a theory to predict the shape of ySV plot cusps on the
basis of the terrace-ledge model of vicinal surfaces shown in Figure 4.1a. If the av-
erage orientation of the surface deviates from a low-index plane such as {100} or
{111} by a small angle 6, an array of monatomic ledges of height 4, and spacing A,
is created to accommodate the orientation as depicted in Figure 4.1a and illustrated
schematically in Figure 4.2. For well-separated ledges, the enthalpy of the surface
increases proportionally with the density of the ledges and each ledge also increases
the entropy of the surface. The increase in enthalpy and entropy combine to produce
an increase in the surface energy that is proportional to 0. These effects can be ratio-
nalized by noting that atoms along a ledge have fewer nearest nei ghbors (i.e., more
broken-bonds) than those on the terraces and thus a higher enthalpy. This is similar
to the behavior of the surface energies in Egs. 3.18. For example, on the (100) sur-
face shown in Figure 4.1a, the ledge atoms have five broken bonds as compared to
the terrace atoms, which have four broken bonds. Thus, to first approximation, we
might expect that the excess enthalpy associated with a ledge atom is about VeySV
(expressed as energy per atom). The entropy may also increase, because the ledge
atoms are less constrained and can vibrate more freely than the terrace atoms and
because at finite temperatures, they may also contain kinks that increase the config-
urational entropy along the ledge.

Using this description for an array of noninteracting monatomic ledges of height
hy with an excess energy per unit length of ledge E,, the surface energy may be writ-
ten as a function of orientation including both enthalpy and entropy contributions as

¥*V = 3" cos 6 + ("h—&) sin 6, @.1)
1

Where y3V is the surface energy of the singular surface and m is a phenomenolog-

1cal parameter that quantifies the entropy of the ledge. This expression is some-

times referred to as the Gruber-Mullins theory [3 1]. The cos 6 term accounts for

)

|

Figure 4.2. Cross section of a vicinal surface showing 6, h, and A
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ibution of the terraces or singular surfaces to the surface energy and the
;l;: :O:::n accounts for the contribution of the ledges to the surface energy. The
quantity (sin 8)/h = 1/\, gives the density of ledges along the surface. ;
The parameter v is designed to account for both the effects _o'f tempe.mmr; :zd

interiedgespacingontheenu'opyoftheIedgetlngughthequapuuesﬂ.-c'.,lkn :
0, respectively. In the limiting case where there is no entropic contribution to le
ledges, that is, no tendency forthcledgestowm?dm-orkmk(OKforap?rfec‘Lz
straight ledge), n = 1 and Eq. (4.1) reduces to a snnplP form, where E/h, glvesd
surface energy y§V of the ledges. As the temperature increases, B dmmes and 7
becomes less than one. Thus, theﬂ'eeenergypermutlengthofiedgeﬁjl ISM
by the tendency of the ledge to wander or roughen. Note tluu the m.agmmde of this
effect is directly related to the interatomic bond stmngth in the equation for 8. The
ability of a ledge to roughen also depends on the spacmg]:etween the l?dge& As ]
increases and \; decreases, the ledges must becf)me straight to avoid interaction.
Therefore-nincrenseswithhmilacﬁﬁcalvalmmrea_ched_ﬁ,.whmlheledgesbe-
come straight and m = 1. Figure 4.3 illustmmtm:relatlomlup among v, B and 0 :‘or
a (100)[011] ledge system in an f.c.c. crystal like the one shown in Figure 4.1a.
Note that as 77— 0 K, B — ® and n — | in Figure 4.3, and the ledge entropy con-
tribution vanishes. As the temperature increases above 0 K, the parameter B de-

6 . DEGREES

6 for a (100)[017] ledge system for various values of the parameter B,
Mmﬁg.xyw.ﬂmmpuwmmm..m,w
land.
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creases for a given angle due to roughening of the ledge from thermal kinks. As C
increases, 7 increases because the ledges must straighten to avoid interaction (ie.,
overlapping one another),

The main result of Eq. (4.1) is that a plot of y3V versus  has a cusp when 6
equals zero and the magnitude of this cusp is proportional to the free energy in-
crease for each ledge added (nEy/h). In addition, the magnitude of yS decreases
with increasing temperature, because 7 is a decreasing function of temperature,
These characteristics are Qualitatively displayed by the graphs for lead in Figure
3.16. It is important to note that there is a strong similarity between the model be-
hind Eq. (4.1) and the dislocation model of a low-angle grain boundary (Chapter
13); in both cases, the atomic disorder is localized at line defects that correspond to
the termination of planes of atoms at the interface.

If we differentiate Eq. (4.1) with respect to 7'and 6, and assume that dySV/30 be-
comes negligibly small as 6 tends to zero, it is possible to determine the following
relationships for the various enthalpic and entropic parameters:

Y (’0‘-{.0) =v3Y and S(o—0) = So; (4.2)
a?io‘i,‘n " E!- aS(g_.o) s BE,J'GT
W 8 W —g 5 " il

where (—0E/aT) is the ledge entropy. Estimates of these parameters can be made by
measuring the intercepts and gradients of the vSV plots (3y5V/30) and entropy plots
(5/38) around low-index poles. Comparison between experiment and this theory
has met with varying degrees of success. One favorable case is shown for vicinal
surfaces of copper near {100} in Figure 4.4 [24]. Table 4.1 also shows values of the
surface energy, surface entropy, ledge enthalpy and ledge entropy obtained for
{100} copper as a function of temperature in this investigation, using Egs. (4.2) and
(4.3).

4.2. SURFACE DEFECTS AND SURFACE ROUGHENING

So far, we have considered the structure of a crystal surface as ideal and free from
any relaxations or defects, except for the possible presence of ledges and kinks

Closedlmpsornehmrksinthecrystalonheymuamminmmthecrystuswfacc
[32]. Thermodynamic point defects are stable above 0 K. These defects all have a
Miﬁveﬁ-eeenergyoffonmﬁonfromwcnruemsimbytheTLKmdeLbut
they are stable in finite quantities because of the favorable change in entropy associ-
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102 T

¥ mk)SV/¥ (100ySY
¢

T=l00 K

6 (rad)

Figure 4.4. Comparison of experimental data (solid curves) for copper with the
Gruber-Mullins theory (dashed curves) close to {100} Reprinted with permission from [24] by
Elsevier Science Ltd., Oxford, England.

ated with the disorder produced in an initially ideal system. We briefly decribe ki-
netically stable dislocations and then discuss thermodynamically stable defects.
There are two primary types of dislocations: an edge and a screw dislocation.
Schematic illustrations of the termination of edge and screw dislocations with a
crystal surface are shown in Figure 4.5. In both cases, the line direction of the dislo-
cation is taken as normal to the crystal surface, The edge dislocation is essentially
associated with an extra half-plane of atoms in the bulk of the crystal, indicated by
the L in Figure 4.5a. Edge dislocations have different bonding configurations than
normal surface atoms and thus behave differently in gas—surface interactions such
as adsorption or surface chemical reactions. The emergence of a screw dislocation
creates a step on the surface of a crystal, one end of which is tied to the site of dislo-

Table 4.1. Twmnuum«mmmmmm
near {111} Cu

Surface Enthalpy  Surface Entropy  Ledge Enthalpy Ledge Entropy

Temp. (°C) (mJ/m?) (mJ/m2-°C) (J/m) (J/m-°C)
827 1448 0.33 1.8x10-1! 0.7x10-1
927 1415 same 1.2x10-1! same

1027 1382 same 0.5x107"! same

Source: From [24].
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Figure 4.5. Simplecubicmodelsllmmmweaofem«gmof{a)edgomd{b]wew
dislocations onto the crystal surface. From [33].

cation emergence as shown in Figure 4.5b. As we shall see in subsequent sections,
the presence of such steps has a large influence on the growth of crystals from the
vapor or solution. Because the step is tied to the site of dislocation emergence, it has
the property of being continuously regenerated as crystal growth proceeds, thus
eliminating the nucleation barrier to growth. A transmission electron microscope
(TEM) image of screw dislocation spirals on the surface of a sodium chloride crys-
tal revealed by the gold decoration technique is shown in Figure 4.6 [34).
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We now turn our attention to thermodynamically stable defects. In addition to
the terraces, ledges and kinks that were described previously, a variety of other
types of defects can be present on crystal surfaces. Figure 4.7 shows some of the
more common possibilities using a simple cubic {100} surface for ease of illustra-
tion. On an f.c.c. {111} surface such as that in Figure 3.7a, the number of nearest
neighbors adjoining a surface (terrace) atom is 9, adjoining a ledge atom is 7, ad-
joining a kink atom is 6, adjoining a ledge adatom is 5, and adjoining a surface (ter-
race) adatom is 3. The reader is encouraged to derive these numbers for an f.c.c.
{111} surface using a hard sphere model, such as Figure 4.1.

The surface defects shown in Figure 4.7 are present at equilibrium at any temper-
ature above 0 K for thermodynamic reasons and are similar in concept to the vacan-
cies and interstitial atoms found at equilibrium in bulk crystals [35]. To illustrate the
importance of these defects in real crystal surfaces, we look at the phenomenon of

surface roughening from two different viewpoints. First, we use a nearest-neighbor

bond model and simple analytical expressions to examine the roughness of low-in-
dex terraces and ledges as a function of temperature. Second, we compare our sim-
ple calculational results with those from more sophisticated computer calculations,
As in our treatment of surface anisotropy, we see that the simple nearest-neighbor
bond model yields qualitatively, although not quantitatively, correct results for sur-
face roughening.

4.2.1. Analytical Treatment of Terrace and Ledge Roughening

The phenomenon of surface roughening was initially treated in the classic work by
Burton, Cabrera and Frank [36], as was the TLK model of surfaces in the previous

section, but here we follow a somewhat simpler treatment developed by Mullins
[37] and Hirth [27] that yields the same result. In our analytical treatment, we con-

sider {111} and {100} f.c.c. crystal surfaces using a three-level, nearest-neighbor

bond model, which includes surface atoms, surface adatoms and surface vacancies.
Because the addition or removal of an atom from a kink regenerates another identi-

Figure 4.7. Schematic view of a vicinal surface showing low-index terraces, monatomic '

ledges, atoms and vacancies at various positions on the terraces and ledges. From [27,33].
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cal kink but otherwise leaves the crystal unaltered, we assume that equilibrium
among these defects is obtained through kinks in ledges.

Consider a unit area of a {111} surface of an f.c.c. crystal in which the atoms are
bounded by nearest neighbors with bond energy e,. The surface is infinite in extent
except for the presence of one ledge containing one kink. To create a vacancy, we
remove a surface atom, breaking nine bonds, and replace it at a kink site, restoring
six bonds. Thus, the net energy of forming a vacancy is 3e,. (The same procedure
can be used to calculate the energy of formation of the other defects in Figure 4.7.)
If we now create n, vacancies per unit area of surface, the energy of vacancy forma-
tion is

2
E\f = Seb,lv s .éeﬂ\'_’ (4-4)
NI‘ 11}

where the second term arises as a correction for surface divacancies, and Ny is
the number of surface sites per unit area on the {111} surface. If there is no binding
energy between vacancies, then the number of divacancies is n, times 6n,/Ny(111)s
that is, the probability that an adjacent site is also vacant times '4, because, in such a
procedure, each divacancy is counted twice. The energy contribution from divacan-
cies is equal to this number times 4, the difference between the free half-bonds of
two single vacancies and a divacancy, times the half-bond energy €y/2. In the re-
mainder of this treatment, we assume that there is no binding between divacancies.

If we assume that an adatom cannot occupy a site overhanging a vacancy, the
number of ways of distributing n, vacancies among N, = (Ny(111) — 3n,) sites, where
n, is the number of adatoms, each of which excludes three sites, is

§=exp£= N'I

k. G-ajint’ (45)

based on standard Fermi-Dirac statistics [38]. Applying Stirling’s approximation
[38], the Helmholtz free energy of formation of n, vacancies is

ben?

AT

F=E-TS=3en,— (4.6)

i kBT[Na In Nl "(N: _"\r) In (N. == ”\r) —n, In "v]-

We can then obtain the equilibrium concentration of vacancies from the condition
that (8F/an,) = 0, yielding

nV
N-{lm—?ﬂl-"‘v

3
"”‘P‘{;.%[l "«RJNHIH})]]- 4.7)

I the case of adatoms, there are two possibilitis. First, if adatoms are constrained

9ccupy only the normal f.c.c. sites, then the derivation of n, follows the above
treatment for ny exactly and an equation like Eq. (4.7) results, with n, and n, simply



80 SURFACE STRUCTURE

4.2. SURFACE DEFECTS AND SURFACE ROUGHENING 81

interchanged. If, on the other hand, both normal f.c.c. sites and sites corresponding
to h.c.p. sites, both of which have three nearest neighbors to an adatom are occu-
pied, then twice as many sites are available to adatoms, but each vacant site ex-
cludes six adatom sites and each adatom excludes three adatom sites. Thus the
adatom equivalent of Eq. (4.7) in this case becomes

ny N 36,
2Ny(111) —6n, —4n, o {kBT (1 = 4(n/Nyuny l)]]- (4.8)

For a {100} surface of an f.c.c. crystal (or a simple cubic crystal), we can simi- :
larly obtain the expressions -

= 2
s {K‘;.u - 2w~.{m,)1] (4.98)

e
Nit100) =0y — 1,

kpT/¢€p

n, 2€
A R < L —["'-—b-[l - «RJN'[ wtn)]]- (49b)
Ni(100) — =1, ksT Figure 4.8. Surface roughness s for a {100}

s fora awl'acaofanf.c.c.{oralmplocuhlc)cryatalasa
Noting, in this case, that n, = n, and letting X = X, = X,, where X, is the mole frac- N

tion of vacancies and X, is that of adatoms, Egs. 4.9a and b both become

- 2 —m]. (4.10)

o = P T considerable roughness at temperatures well below the melting point. For example,

Figure 4.9 shows a scanning-tunneling-microscope (STM) image of a surface vici-
nal to .{ 100} silicon, where the distance between the ledges is approximately 17 nm.
A variety of defects including vacancies and adatoms on both the terraces and
ledgef are .clearly visible in the figure. Similar results have been obtained for other
materials, u?dicating that, although the behavior of the surface roughness is qualita-
tﬂ_'ely described by thc curves in Figure 4.8 (i.e., the surface continually roughens
Wwith temperature until it is no longer well defined), the nearest-neighbor bond mod-
el cannot be used to determine the actual temperature dependence for a particular
To fully describe the behavior of a TLK model of a surface with respect to tem-
Perature, we need to consider roughening of ledges in addition to rough!;cing of the

termces.lfmmkethemeofaﬂllb eonan {1
11} fe.c.
of formation of !, ledge vacancies is o {111} fe.c. surface, the energy

Following Burton et al. [36], we can define the surface roughness s as the number
per site of free bonds parallel to the surface, which in the case of {100} gives

s= N(f:/z) =8X(1 - X). (4.11) f

A plot of s versus (kg T/e,) obtained by simultaneous solution of Eqgs. (4.10) and
(4.11) is shown by the solid line in Figure 4.8. The dashed line corresponds to the
treatment of Burton et al. [36]. Note that the quantity (kg7/€,) in Figure 4.8 is the in-
verse of the term B used in the previous section in the Gruber-Mullins analysis. Be-
cause €, is the nearest-neighbor bond energy, the quantity (kg77e,) is a measure of
the amount of (thermal) energy present in the system relative to the nearest-neigh-
bor bond energy of the atoms. [The bond energy can be obtained by noting that
AH,, the heat of sublimation, equals the energy needed to remove an atom from a
kink site to the vapor. For an f.c.c. crystal this energy is 6e,, so that €, = AHJ/6
(J/mol) as defined in Eq. (1.4).] The results in Figure 4.8 predict that s is apprecia-
ble only for (kgT/ey) > 0.5. If €, is on the order of 337 kJ/mol, as for copper in Table 1
1.1, then Figure 4.8 predicts that roughening of the surface would occur only at tem- .

&ty — [&(nd) /N, (4.12)

Where A, is the number of available ledge si inui i i
i ook ge sites. Continuing as in the previous treat-

peratures an order of magnitude higher than the melting point of copper. Thus, we ny 5 €, §
can conclude from Figure 4.8 that low-index planes should not become rough below N-mien 9 E—];(:-zx,)] (4.13a)

the melting point. Experimentally, this is known not to be true; surfaces can display
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i i tructed surface. The white lines
Figure 4.9. STM image of a vicinal silicon (100) (2 x 1) recons
are dimer rows on the surface. The nomenclature used to describe the reconstruction and the
dimer rows are described in subsequent sections. From [10,39] reprinted with the permission

of Cambridge University Press.

na

€
[ =exp _[k_:f“ - ZX,')]. (4.13b)

lIer —ﬂ:—-ﬂv

In this case, the energy of formation of defects is much less lh.an in the case of
the low-index surface, and roughening typically becomes ?pprECIable at tempera-
tures of approximately one-half the melting point of a mateqal. In fact, abqve sucha
temperature, it becomes more meaningful to consider the kink concentration rather
than the concentration of ledge vacancies and adatoms. Nt_)tc that a smg‘le Iefige va-
cancy, a divacancy, and so on, are all equivalent to two kinks of opposite sign dls;'
placement. Burton et al. [36] considered the statistical thermodynamical problem o
kink formation and, for the above example of a {111} f.c.c. surface, found that ny,
the number of kinks per unit length of ledge, is given by

By w o2k v i (4.14)
N, exp kT exp 2T

where E, is the energy of formation of a kink (half the energy of formation of a va-
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cancy because a vacancy is equivalent to two kinks). Equation (4.14) is quite useful,
because it can be used to determine the ledge energy and kink formation energies by
counting the number of kinks per unit length along ledges in STM images, such as
those in Figure 4.9, as a function of the temperature at which the surface was equili-
brated before the STM measurements. These measurements have been performed
for the {100} silicon surface and the ledges that run parallel to the dimer rows have
an energy of 0.028 eV/atom, whereas those that run perpendicular to the dimer rows
have an energy of 0,09 eV/atom. An excess energy of 0.08 eV is associated with
each kink site. Note that the ledges that run parallel to the dimer rows in Figure 4.9
are less kinked, because their excess energy is lower and they are more stable.

The picture that emerges from our analytical nearest-neighbor bonding treatment
of ledges is that they become appreciably rough at a temperature of about 0.5 /65
This agrees conceptually with the inclusion of ledge roughness as a function of tem-
perature in the phenomenological parameter 7 in Figure 4.3 and with a number of
experimental results. As we shall see below, it also agrees with the picture that
emerges from more sophisticated computer calculations.

4.2.2. Computer Calculation of the Equilibrium Structure
of Crystal Surfaces

The equilibrium structures of <100> oriented steps on vicinal {100} surfaces have
been examined by Monte Carlo methods [40]. The purpose of the work was to de-
termine the energy of isolated ledges and the thermodynamic properties of surfaces
with different ledge densities. Thus {100}, (21 10}, {1010} and {510} surfaces of
a simple cubic crystal were studied as a function of kg TVe,, assuming nearest-neigh-
bor interactions of strength €, = AH,/3. By determining the ledge density depen-
dence of the surface energy as a function of temperature and orientation [just as in
Egs. (4.1) and (4.3) and Problem 4.2], it was possible to extract the temperature de-
pendence of an isolated <100> ledge. The energy of the ledge E, is shown as a func-
tion of temperature in Figure 4.10. The energy of the ledge first rises with tempera-
ture as a result of thermal excitation until, in a critical region, E, decreases rapidly to
Zero at the roughening temperature T
~ Figure 4.11 shows computer drawings of the stable structures generated during
Simulation of the {21 1 0} surface at several values of kg TVe,. At the lowest temper-
a_tllre illustrated, where kgTle, = 0.428, the ledge is noticeably rough, but no excita-
tions appear greater than unit height perpendicular to the surface. As the tempera-
turt: is increased into the critical region, the incidence of greater-than-unit-height
ex{:ltations near the step edges increases until E; = 0, and they are no longer distin-
8uishable. This arises because thermal roughening of the terraces effectively cam-
Ouflages the ledges introduced into the simulation by the boundary conditions. This
atic change in surface topography is associated with the surface roughening
transition indicated in Figure 4.10. Unlike the two-dimensional Ising model indicat-
¢d in Figure 4.10 and the previous analytical treatment where the height of the
Toughened surface was confined to only one atomic dimension above or below the
Surface plane (i.e., a three-level model containing only single adatoms and vacan-
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Figure 4.10. Temperature dependence of the energy of an isolated <100> ledge on the {100}
surface of a simple cubic crystal. The dashed line represents the energy of an interface in a
two-dimensional Ising model. Vertical arrows indicate the two-dimensional Ising model critical
temperature T, and the roughening transition temperature T,. Reprinted from [40] with kind
permission from Elsevier Science-NL, Amsterdam, The Netherlands.

cies), Figure 4.11 shows that higher excitations occur above 7. This change in the
nature of the excitations is manifested by a smooth decrease of E, to zero at kgT/e;, ~
0.64. The data in Figure 4.10 were fitted to an equation of the form

El % [(Tr = WTI]OJS’ (415)

where 0.64 was used as kg T/€,. This simulation combines the effects of both terrace
and ledge roughening to provide an atomistic description that explains the behavior
of surfaces with temperature. Note that it agrees qualitatively with most of the re-
sults from the previous descriptions of ledges and terraces. It also predicts that at
the roughening transition, the cusp in the Wulff plot for a low-index surface vanish-
es. (Note that this is a second-order transition with a general behavior similar to the
loss of long-range order shown in Figure 2.12.)

The effect of surface roughening on the equilibrium crystal shape is illustrated
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m 041.1 1 'T/pm:teeddmn:imng‘ of representative {21 1 0} surface configurations at various
ol T/, Raprl' [40] with kind permission from Elsevier Science-NL, Amster-

schematically in Figure 4.12. At T = 0, the equilibrium stal i
ml:eighbor.si!nple cubic crys!al is a sqeu‘:are, as illuscgted iih;‘mr: gf:::;
e I.m1mﬂpem_n.lrczl:' :s increased but is still below 7, for the {100} surface, the {100}
b s cou are now separated by s':nooﬂﬂx cm:ved surfaces due to roughening
gy, rners. An example of this state is displayed by the lead crystals in
-15. As the temperature approaches the { 100} roughening transition tem-

Perature, the facets shrink to zero, and above T, the equilibrium crystal shape is a

single smoothly rounded surface wi i
iy e s mmthout edges. As we might expect from our treat-

f - ue of the roughening tem ies wi B
orientation, generall)f being higher for low-indegx surfp?:e:nl:n:g::p‘l‘:;h t;eur
m in the Wulff plot. Tlns‘ leads to the concept of a surface-roughening phase di?—’
- fo. a;‘;liustrated for the simple cubic crystal in Figure 4.12b. Note that T, is high-
T the vicinal {100} surfaces and that the {110} surface at 45° isroughat 0 K,

§ Wy ; A :
; is simple cubic model, it is composed of atom-high ledges spaced one
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a,=pa and b,=¢gb (pg=0,1,2..) (4.18)

m.ld the surface unit-cell vectors are parallel to those of the substrate. The five two-
dimensional surface nets are illustrated in Figure 4.13.

In the case of a clean ideal surface without relaxation, p and ¢ are both unity. The
arrangement of surface atoms that is identical to that in the bulk unit cell is called
the substrate structure and is designated (1 x 1). For example, the substrate structure
of gold on the (111) surface is designated gold (111) (1 x 1). Other arrangements of
surface atoms are called surface structures. It is often found that surface structures
can be characfterized by unit cells that are integral multiples of the substrate unit

cel'l. If the:- unit cell of the surface structure is twice as large as the underlying bulk

s , unit cell, it is designated (2 x 2). If it is twice as long in one direction but has the
e same length as the substrate in the other, it is designated (2 x 1). Figure 4.14 shows

examples of some frequently occurring surface structures with two-, four- and six-

Figure 4.12. (a) Equilibrium shape of nearest-neighbor simple cubic crystal as a function of
temperature T. The evolution of the edge position in the equitorial plane is shown in the phase
diagram in (b), where T, is the roughening temperature of the {100} surface and 6 is the angle
of the surface normal from {100}. From [41].

4.3. SURFACE CRYSTALLOGRAPHY

We would like to continue our discussion of real surfaces to include surface relax-
ations and reconstructions. To do this, we need first to discuss the notation conven-
tionally used to describe the structure of crystal surfaces. We already have encoun-
tered an example of this notation with regard to the silicon (100) (2 x 1) surface
shown in Figure 4.9; here we develop this notation further.

Surface structures are usually described in terms of their relationship with the
underlying bulk structure. The substrate lattice parallel to the surface is taken as the
reference net and the surface net is indexed with respect to the substrate. Any trans-
lation between lattice points on the substrate net can be described by a translation
vector

T=na+mb (n,m=0,1,2..), (4.16)

where a and b are vectors that define the unit cell of the two-dimensional lattice.
There are only five lattice types in two dimensions, commonly called the five two-
dimensional Bravais lattices. Similarly, for translations between lattice points on the
surface net, we have

T,=n'a+m'b (n,m'=0,1,2...). 4.17)

In many cases, the relationship between T and T, is such that
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fold rotational symmetry on f.c.c. substrates. Note that in some cases it is preferable
to construct a centered unit cell to avoid noninteger notation for the surface struc-
ture. The letter ¢ is added to the notation to indicate a centered unit cell.

In many instances, the surface structure that forms is due to the presence of an
adsorbed species on the substrate. In this case, the surface structure is described
with respect to the substrate using the same notation as above, but the chemical
identities of the substrate and surface atoms must be added. The notation then be-
comes

M (hKl) (p % q) - B, (4.19)

where M is the chemical species of the substrate, (hk/) are the Miller indices of the
substrate orientation, p and g are integers that relate the surface structure (unit cell)
to the bulk structure, and B is the chemical species of the surface (42). For example,
a surface that was formed by cutting a nickel crystal parallel to the (100) plane of
the crystal and adsorbing oxygen on the surface to form a surface structure that had
twice the periodicity of the substrate in both the a and b directions would be desig-
nated Ni (100) (2 x 2) - O.

In even more complicated cases where the surface and substrate vectors are not
parallel to one another, a similar notation is still used and is written as

M (hkl) (a/a x b/b) Ra - B, (4.20a)

a,=pa+tqb, b,=pa+gb (4.20b)
and R indicates a rotation of the surface structure relative to the bulk structure
through an angle . For example, a commonly observed structure for a nickel (111)
surface with adsorbed oxygen atoms is Ni (111) (\/3 x V/3) R30° - O. This type of
Structure is shown schematically in Figure 4.14¢c, where the dots indicate nickel
atoms and the open circles represent oxygen atoms. If every other lattice site on a
nickel (100) surface is covered with oxygen, then a Ni (100) (\/2 x \/2) R45° - O
surface structure results. To avoid noninteger notation for this structure, it is usually
labeled Ni (100) ¢(2 x 2) - O, as illustrated schematically in Figure 4.14b. In very
complicated cases, it becomes necessary o use a matrix notation to completely
specify the surface structure [43] but this is not described here.
Because surface layers often involve adsorbed atoms, it is sometimes conve-
ient to define the adsorbate coverage ©, so that © = | occurs when an adsorbed
Species occupies all equivalent adsorption sites on a surface, A surface structure is
SaidmhecommmsmteudtbthembmuwhmverOisanﬁonalnumber,or,
more specifically, when the surface layer symmetry differs from that of the sub-
Stl'Mel:nythemic!itit:mc:vrs;ubtrm:-tionoft:eﬂainsymmetry,vq=l|=ments.Adsoﬂmi
metmeswhmsymmoﬂyisn:idenﬂllynlatedtothcmbs&uemuﬂedin—
Commensurate. Examples of increasing coverage of nickel (110) by hydrogen and
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commensurate/incommensurate structures of krypton on graphite are shown be-
low.

Figure 4.15 shows best-fit corrugation surfaces and hard-sphere models for
atomic hydrogen adsorption on nickel (110) at different coverages as determined by
helium atom scattering from the sample surface. The three-dimensional topographic
images clearly indicate the surface layer symmetry and corrugation when compared
to the clean nickel (110) surface. The hard-sphere models depict proposed surface
structures that are consistent with the topographs and other experimental data. Unit
cells for five different surface structures are shown on the hard-sphere models. Note
the zig-zag pattern of hydrogen atoms and their highly anisotropic interactions on
the nickel (110) surface.

Figure 4.16 depicts both commensurate and incommensurate ordered surface
layers of krypton adsorbed on (0001) graphite. In the commensurate structure, the
krypton adatoms occupy one of the three equivalent sites (labelled A, B and C) on
graphite to form a \/3 x /3 — 30° structure. As the surface coverage increases, the
krypton atoms pack together to form a surface layer in which the atoms do not ex-
hibit a unique binding site with respect to the underlying solid substrate. This type
of surface layer is called incommensurate. This situation can occur for gas cover-
ages near unity if the interadsorbate potential energy interactions that determine the
lattice constant of the surface dominate over the adsorbate-substrate potential ener-
gy interactions.

Given the interaction between substrate and adsorbate atoms, the tendency for
many substrates to reconstruct (as discussed in the next section) and the variation of
the thermodynamic quantities with temperature, it is possible to imagine that there
is a rich variety of phase transitions that can occur at surfaces. These are discussed
in Section 4.5.

4.4. SURFACE RELAXATION AND RECONSTRUCTION

In Section 4.2, we saw that the surface structure can vary from the ideal TLK model
because thermodynamically stable defects are present and surfaces can roughen if
they acquire sufficient thermal energy. In this section, we examine two additional
ways in which actual surfaces may differ from the ideal hard-sphere model present-
ed earlier. These two ways are by surface relaxation and surface reconstruction, both
of which decrease the energy of an actual crystal surface compared to that of the
simple hard-sphere broken-bond configuration. We also look at surface relaxations
and reconstructions on f.c.c. metals, building on our previous treatments. In addi-
tion, we examine these phenomena on silicon surfaces to illustrate some of the dif-
ferences that occur when crystals display highly directional bonding and because
the surface structure of silicon is so important both scientifically and technological-
ly. In relatively open structures such as ceramics and semiconductors, the energy
changes associated with relaxation and reconstruction are usually much larger than
those associated with roughening. This is less true for metal alloys, which are dis-
cussed first.

(B4 = 0 ML)

(6y = 0.67 ML)

Ni(110) + o2 x 6)H
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Figure 4.15. Three-dimensional topographic images and hard-sphere models of hydrogen adsorption on nickel (110) for increasing coverages 6,

(ML = monolayer). Unit cells of the surface structures are indicated on the hard-sphere models. From [10,44] reprinted with the permission of Cam-

bridge University Press.
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Cu(100) CHARGE DENSITY

Vacuum

(a) ()

Figure 4.16. (a) Commensurate and (b) incommensurate layers of krypton on graphite. The
Mmatmshgmphnesﬂstmevuﬂcudmwm“dthewamm-
dicate the positions of adsorbed krypton atoms. The commensurate structure in (a) Is a \/3 x
V3 - 30° structure where the adatoms occupy one of the three equivalent sublattices. From
[10,45] reprinted with the permission of Cambridge University Press.

One way to envision relaxation at a metal surface is as follows. In metals, the
positively charged ion cores are screened by symmetrical Wigner-Seitz charge
clouds formed by the highly mobile conduction electrons [46). This is illustrated in
Figure 4.17 for the case of an f.c.c. crystal viewed along a <100> direction below.
When a {100} surface is created, the electron distribution can be imagined to ini-
tially separate along the boundaries of the WignerSeitz cells as indicated by the
solid lines in Figure 4.17. Once separated, the electrons at the surface are free to
change their distribution in space to lower their energy, which results in a smoothing
out of the surface electronic charge density, as indicated by the heavy dashed line.
This smoothing out of the charge density gives rise to the formation of a surface di-
pole layer, as indicated by the + and - signs. Because of the surface dipole layer, the
positive ion cores in the topmost atomic layer feel a net repulsion from the charge in
their Wigner—Seitz cell and a contractive relaxation of the surface plane occurs until
equilibrium is established. To first approximation, the in-plane structure generally
retains the characteristics as the ideal close-packed structure. Figure 4.18 shows an

::nmgl cha:gc_ density distribution at a copper {100} surface calculated using local-
- ne::;?o ?;nc;on:l theo;y [48]. Changes in the electronic structure are largely con-
€ top layer of atoms and smoothi i i
o ety ing of the charge density at the surface is
In metals, it is often found that there is an oscilla i
» it tory relaxation of the surf;
Where contraction oftl‘ae first layer of surface atoms is followed by an expansiona:‘

Figure 4.17. Schematic of electron smoothing at an f.c.c. {100} surface. From [47).
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Figure 4.17. When the atoms in the first surface layer find themselves in a medium
with a lower average electron density than their bulk counterparts and contract in-
ward, this contraction brings additional charge density into the neighborhood of the
second layer of atoms. These atoms now find themselves on the high-density side of
average. To lower the average electron density around them, the second layer exerts
a force that pushes away the third layer of atoms (i.e., the second layer of atoms ex-
pands relative to the bulk spacing). The third layer then finds itself on the lower
density side of average. This process continues and a damped oscillatory relaxation
proceeds into the bulk.

Table 4.2 shows experimentally determined surface relaxations for the top three
atomic layers in four different unreconstructed f.c.c. (1 x 1) metal surfaces. The
symbols Az indicate the change in the interlayer spacing Az between layers i and
relative to the bulk interplanar spacing. These data show that the top layers general-
ly display a small contraction relative to the bulk and, also, that the atomically
rougher {110} surface shows larger relaxations than do the smoother {100} and
{111} faces. Evidence for slight expansion in the second layer and the oscillatory
behavior mentioned above is seen for most of the {110} surfaces. The values and
trends shown in Table 4.2 compare favorably with embedded atom calculations of
these and other f.c.c. metal surfaces [50].

A number of metal surfaces reconstruct in order to lower their surface energy
rather than undergo a simple relaxation process as described above. Figure 4.19 il-
lustrates two common types of reconstruction using a simple cubic lattice with lat-
tice constant a. When reconstruction occurs, the surface unit cell has dimensions
that differ from the projected bulk unit cell. The gold (110) and (100) surfaces both
reconstruct, and we examine the gold (110) surface in some detail to understand
why metal surfaces might reconstruct.

Clean (110) surfaces of the f.c.c. metals iridium, platinum, and gold are known
to reconstruct to a (1 x 2) surface, whereas the clean surfaces of most other f.c.c.
(110) metals do not undergo this reconstruction [49,50]. The reconstruction has a
missing row geometry, where alternate close-packed rows of the ideal (110) surface

Table 4.2. Surface relaxations for several low-index surfaces of unreconstructed
copper, nickel, gold and palladium*

Surface Relaxation Cu Ni Au Pd
(100) Az, -0.0020 -0.0156 0.0000 0.0050
Az, 0.0031 0.0000 0.0000 0.0000
Azy, 0.0027 0.0000 0.0000 0.0000
(110) Az, -0.0108 -0.0050 -0.0125 -0.0080
Azyy 0.0029 0.0000 0.0070 0.0010
Az, 0.0000 0.0000 -0.0025 0.0000
(111) Az, -0.0014 0.0000 0.0072 0.0000
Az, 0.0000 0.0000 0.0000 0.0000
Azy, 0.0000 0.0000 0.0000 0.0000

*The distances are expressed in nanometers relative to the bulk interplanar spacing [49].
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are removed, thus forming narrow (111) facets. The reconstruction
served experimcntally by several different techniques, with STM andhl:;'?’:i:l{ (t:;::
l‘:g two of the most direct. Figures 4.20 and 4.21 show STM and HRTEM images of
m:f gold_(l 10) (1 x ?) reconstructed surface, respectively. The crystallography of the
stru::d is shown u.mh the STM image in Figure 4.20 and a schematic of the recon-
msunl:'i;alcri w:wed along. the [110] direction is also shown for comparison.
bllwe&mc schema)ﬁ:?j:tlgi ;sls”soc;‘:azt;d with the reconstructed surface are readily visi-
y energ?ﬁcs of the missing row (1 x 2) reconstruction on (110) surf:

nickel, palladium, platinum, copper, silver and gold were investign(ted u)sing :Il;::ezr:f
ing matom method [50). In !ins study', the detailed geometry of the relaxed miss-
g s;urfcm:'e and the relative energies of the relaxed missing row and unrecon-
oo aces were calculated and compared. Table 4.3 compares the surface
energy (llgnscl:fmn the reconstructed missing row surface and the unrecon-
mmcwd aces in their unrelaxed and fully relaxed geometries. The differ-
ﬁmbetw'aenis t_hemfacemermesof!hemonmuctedmdunmommwdsur-
sigh only slightly changed by the relaxation in the atomic positions, indicating
SWfaoegeomety lsnot'detemmcdbydiﬂ“emcesinthe ability of the two

m"“ﬁcﬂ geometlll:s to lower their energy by relaxation. The surface energy differ-
soldandm : WMWOMMmthy largest for
palladium and is generally 20-50 mJ/m? less in the reconstructed geome-

try. Analysis of the detailed atomic positions associated with the (110) (1 x 2) re-
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::nc:arrugaﬂ tion between A and B. me[10]repﬂnudwmmepwnbwnd::mg:g:dﬂva;:.
ty Press and [51] reprinted with kind permission from Elsevier Science-NL, s

Netherlands.

Figure 4.21. Experimental HRTEM image along a <110> direction showing the (1 x 2) recon-

structed surface on gold (110). A simulated image of the surface Is shown In the inset. From
[52).
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Table 4.3, Sunmonmdlﬂmmh"--yf,',ﬂ-yﬂ., between
merooonatructedmiulngmwsurlmandmluodwmhxad
unreconstructed (110) surfaces of various f.c.c. metals*

Metal Ay (unrelaxed) Ay (relaxed)
Cu 19.2 17.6
Ag -8.0 6.4
Au -36.8 288
Ni 24 20.8
Pd 9.6 -64
Pt -46.4 -33.6

*The energies are in units of mJ/m? (from [50]).

construction showed that the preferred (1 x 2) structure results from a competition
between attractive pair interactions at second-nearest-neighbor atomic distances and
repulsive three-body interactions at nearest-neighbor distances. The results also
showed that the energy of the reconstructed surface decreases relative to the unre-
constructed surface as one goes down the columns in the periodic table, consistent
with the observation that only elements at the bottom of the periodic table such as
gold and platinum reconstruct.

Qualitatively, one might argue that the (1 x 2) reconstruction occurs as a trade-
off between the formation of a unit area of {110} surface with a surface energy
Yoy and the same projected surface area composed of microfacets of {111} sur-
face with surface energy Y¥{il1- For example, the atomic model at the top of Figure
4.20 displays {111} facets approximately three atoms wide. As mentioned in Sec-
tion 3.5.2, a high-index surface may be unstable with respect to faceting; Figure
4.20 is an atomic illustration of such a situation. Problem 4.10 compares the energy
of the unreconstructed {110} surface with that of the reconstructed surface with
{111} microfacets using a nearest-neighbor bond model, The answer to this prob-
lem shows that the two surfaces have the same surface energy in the nearest-neigh-
bor model, and, hence, it cannot be used to determine the most stable structure. The
longer-range interactions included in the EAM are able to reveal these small energy
differences, as discussed above.

Figures 4.22a and b show top and side views of the silicon (100) surface before
and after reconstruction, respectively [53]. Because of the tetrahedral coordination

.face, These bonds each contain an unpaired electron and are highly unstable. To sat-
'sfy partially these unpaired electrons, silicon dimer formation occurs, as illustrated
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Figure 4.22. Top and side views of a silicon (100) surface (a) before and (b)
tion and reconstruction to a (2 x 2) lattice. From [53] reprinted with the permission of Cam-

bridge University Press.

in Figure 4.22b. Dimer formation also occurs on the other low-index silicon sur-
faces such as {111} and {110}, and this greatly reduces the surface energy [47].
Table 4.4 compares many-body calculations of the surface energies of unrecon-
structed and reconstructed silicon surfaces in both unrelaxed and fully rglnxed con-
figurations y§uny.sedy With the surface energies based on the nearest neighbor bro-
ken-bond model 3. The number of broken bonds per atom ny, on each su'.rface and
the bond energy per atom pair —€; are also shown. Note that reconstruction of the
silicon {100} surface to either the (1 x 2) or (2 x 2) oonﬁgurat:(:m reduces the sur-
face energy by almost a factor of two compared to the nearest-neighbor calculation.

Table 4.4. Calculated surface energies (in mJ/m?) for silicon

?5\’
Plane my —€4(eV) y3v Unrelaxed  Relaxed
5 1019
111} unrecon. 0.5 0.58 1465 122
illO}unrwon. 1.0 1.17 1794 1601 1468
{100} unrecon. 2.0 234 2537 2310 2220
{100} — (2x1) :;43;
{100} - (2%2)

Source: From [53].
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Even in the fully relaxed many-body calculation, the surface energy of the (2 x 2)
reconstructed surface is less than that of the unreconstructed relaxed surface by ap-
proximately 1000 mJ/m?. This is a much greater reduction than the approximately
40 mJ/m? reduction observed for reconstruction of the gold (110) (1 x 2) surface,
for example, emphasizing the large reduction in energy that can be gained by recon-
struction of semiconductor surfaces with directional bonds as compared to metal
surfaces. Similar reconstructions occur with dangling bonds at the edges of ledges
on silicon surfaces and these also lead to major reductions in the excess energy of
the ledges.

Figure 4.9 showed an STM image of monatomic ledges on a silicon {100} sur-
face that had reconstructed to a (1 x 2) configuration. When a monatomic step oc-
curs on a silicon {100} surface, its height is equal to one quarter of the bulk lattice
constant from the tetrahedral bonding in the diamond cubic (d.c.) structure. Thus,
the 90° rotation of the (1 x 2) rows that occurs on alternate terraces as in Figure 4.9
is a direct consequence of the symmetry of the d.c. structure; that is, it can be
thought of as two interpenetrating f.c.c. lattices rotated 90° relative to one another
each quarter of the lattice spacing along the <100> direction. As mentioned earlier
with regard to Figure 4.9, the energy of the ledges that run parallel to the dimer rows
is approximately one-third of those that run perpendicular to the dimer rows.

Another well-known reconstruction on silicon is the (7 % 7) reconstruction that
occurs on the (111) surface. This very complex surface reconstruction solves the
problem of high-energy dangling bonds by eliminating many of them entirely. Fig-
ure 4.23 shows a transmission electron diffraction pattern obtained from the silicon
(111) (7 * 7) surface. Such data and electron microscope images led Takayanagi et
al. [54] to propose a complicated reconstruction for this surface, which has since
been verified by other techniques including surface X-ray scattering, photoemission
Spectroscopy and STM [55). The key structural features of this surface model,
which is shown in projection normal to the surface in Figure 4.24, are the following;

1. Twelve top layer adatoms

2. A stacking fault in one of the two triangular subunits of the second layer
3. Nine dimers that border the triangular subunits in the third layer

4. A deep vacancy at each apex of the unit cell.

On a normally terminated silicon (111) (7 x 7) surface, there is one dangling bond
on each of the 49 top-layer atoms. The purpose of the stacking fault in one triangu-
lar subunit of the second layer of atoms in the unit cell is to eliminate seven atoms
along the row where the faulted subunit is matched to the unfaulted subunit. Hence,
there are only 42 atoms (and dangling bonds) in what is now the second layer of the
feconstructed surface. One can then replace three dangling bonds by one, by allow-
Ing single silicon atoms (ejected from the original top layer or migrating from else-
Wwhere) to adsorb and bond tetrahedrally to three second-layer atoms each. The 12
top-layer adatoms on the (7 x 7) surface then reduces the number of dangling bonds
to 18, or approximately one-third of the original number. A counterpart to this type
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Q© Top layer
@ Second layer
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Figure 4.23. Transmission electron diffraction pattem for the silicon (111) (7 x 7) surface. The
00, 01 and 11 spots for silicon are labeled in the figure. From [10] reprinted with the permis-
sion of Cambridge University Press and [54] reprinted with kind permission from Elsevier Sci-
ence-NL, Amsterdam, The Netherlands.

of very complicated surface reconstruction is not found on {111} metal surfaces be-
cause of the nondirectional nature of the metallic bond.

Striking STM images of the silicon (111) (7 % 7) surface have been obtained and
Figure 4.25 shows an example of these. The image in Figure 4.25a is a conventional
topographic image that provides a view of the surface adatoms and the basic unit
cell (outlined). The succeeding images in Figs. 4.25b through d display spatial vari-
ations in the tunneling current (brighter areas denote greater current flow) for dif-
ferent bias voltages. The image in Figure 4.25b was obtained for a surface state 0.35
eV below the Fermi level. This state is localized on the 12 adatoms but exhibits a
distinct asymmetry between the faulted and unfaulted portions of the unit cell. The
third image in Figure 4.25¢ shows a state 0.8 eV below the Fermi level that arises
from the dangling bonds of the six second-layer atoms that are not directly bonded
to adatoms. Note also the dangling bonds at the deep corner holes. The last imagé
(Figure 4.25d) represents a deep state that probably corresponds to 3p, and 3p, or-
bitals of the adatoms bonded to 3p, orbitals of the atoms directly below them.

ur
:::n ;:na:. b::;ﬂro structure of silicon (111) (7 x 7). (a) The first three layers of atoms, as
gk prom'i aa‘tubet«dde and the surface unit cell is outlined. (b) A schematic view that in-
R o o nent depressions in the surface (round and oval holes), the dimers (double
stacking fault (shaded region). From [10] reprinted with the permission of Cam-

University Press and 56,5 nted
, The Nethertands. """ With kind permission from Eisevier Science-NL.

4.5. PHASE TRANSFORMATIONS AND SURFACE MELTING :
tions at a surface. For a pure substance, these transformations include reconstruc-

tion and surface melting. When adsorption or segregation occurs to the surface

More complex reactions can oc i 3 :
; cur. We begin our discussion with phase trans .
tions and conclude with the concent af sirfacs malfina P forma

We discussed the concept of phase transformations in terms of a bulk system in
Chapter 2. Here we examine the possibility of two-dimensional phase transforma-
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d three electron-
4.25. Scanning tunneling microscope images of the topography (a) an 0
Eﬂ:m states (b):g} of a silicon (111) (7 x 7) surface. From [10,55] reprinted with the per

mission of Cambridge University Press.

4.5.1. Surface Phase Transformations

It is often useful to characterize the competing phases in a transformation in m
of an order parameter. By convention, the order parameter usually has : :;;j -
value in one phase (usually the low-temperature low-symmetry §mta‘:l) an o
in the other (high-temperature high-synupetry) bphase. We previously epc::)m o
the order parameter in Section 2.6. when discussing order-disorder trans :)er o
for example. As illustrated in Figures 2.12_ and 2.13, the order pm:m -
displays two rather different types of behavior near the transforrfr_latlond g:n .
T.. A discontinuous change occurs in the order parameter for a first-order o
n:ation. In a simple case, two independent free-energy curves crossd(_n:t.a ar::: -
the temperature changes and the syst;:m abrupl;.y chazﬁiss on:;b(;?:h ;sf:,::ﬂi ::- e
i to another. First-order phase transforma : e
::rl:cﬁga:; phase coexistence and nuc?eation and growﬂl._lt; cstt)lt;u'as:t,hlar:) 11 c:l)n;‘m;:n
ous phase transformation, two competing phases become in ﬂ: tefnu s inehy fow.
this case, the order parameter rises smoothly from zero as the pc:.a e i
ered (Fig. 2.12). One typically finds that the order pmewr fm a :on mt:](:us s
formation varies as (T'— T.)" for T very near T,, where n 1s referred to as the cri
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exponent. As it turns out, the value of n only depends on a few physical properties
such as the symmetry of the system, the dimensionality of the order parameter (i.e.,
scalar versus vector) and the dimensionality of space. This suggests that rather in-
teresting things may happen at a surface where the dimensionality is two rather than
three.

It is found that solid surfaces undergo a variety of reconstructive phase transfor-
mations as a function of temperature. Thus, we would like to display a structural
phase diagram for surfaces as we would do for the analogous bulk problem, Unfor-
tunately, it is often difficult to establish the true surface structure, and additionally,
many surface phases are actually metastable, which complicates determination of
the equilibrium structural phase diagram. In spite of these problems, a number of
surface phase transformations have been examined in detail, and we will look at
several, starting with a continuous transformation in the familiar f.c.c. metal gold,
continuing with a first-order phase transformation in silicon, and then closing by
looking briefly at some phase transformations than can occur for an asorbed surface
layer on a substrate, returning to the example of krypton on graphite in Figure 4. 16.

The (2 x 1) — (I x 1) reconstructive phase transformation that occurs for a gold
(110) surface provides an excellent example of a continuous surface transformation.
Experiments show that the high-temperature (1 x 1) structure reversibly transforms
to the missing row (2 x 1) structure depicted in Figures 4.20 and 4.21 at approxi-
mately 377°C. Based only on the symmetry of the (110) surface, it is possible to
predict that the temperature dependence of the order parameter near T, should ex-
hibit a value of the critical exponent n = 1/8 in accordance with the exact result of
Onsager [58]. As shown by the experimental data in Figure 4.26, obtained by moni-
toring the intensity of superlattice reflections unique to the (2 x 1) phase by low-en-
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Figure 4.26. Temperature dependence of the order parameter for the (2 x 1) — (1 x 1) trans-
formation on gold (110). The Intensity of the (2 x 1) LEED spots (circles) are compared with
Onsager's exact solution of the two-dimensional Ising model (solid curve). From [10,59]
feprinted with the permission of Cambridge University Press.
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ergy electron diffraction (LEED), the order parameter goes continuously to zero
with an experimental value of n = 0.13 £ 0.02, very close to Onsager's solution. The
EAM combined with Monte Carlo calculations has been used to examine the de-
tailed structure of the gold (110) surface near T, [60]. The picture that emerges is
that below the critical temperature, the rows are generally long and coordinated,
with some defects present, whereas above the critical temperature, some short-range
order persists in the form of short chains of atoms along the <110> direction with
little coordination among the rows.

The silicon (1 x 1) — (7 % 7) reconstruction is an example of a surface phase
transformation that exhibits the characteristics of a first-order phase transformation
and cannot proceed by a continuous transformation according to symmetry consid-
erations [10]. Figure 4.27 shows a series of reflection electron microsope (REM)
images that clearly demonstrate that the reaction is first-order [61]. The images
show the nucleation and growth of regions of (7 x 7) reconstruction as the sample is
cooled below the transformation temperature. The complete transformation occurs
over a range of 20° to 30°C below T. This sluggish behavior is not uncommon for
first-order phase transformations where strain plays an important role in the trans-
formation [62].

Before discussing surface melting, we examine the possibility of phase transfor-
mations involving adsorbed atoms onto a surface, a situation that was introduced
but not fully explored in Section 4.3. This discussion introduces the concept of epi-
taxy, or lattice matching between a substrate and an overlayer. In particular, we
compare the argon—graphite, krypton—graphite and xenon—graphite systems shown
in Figure 4.28. It is important to note from the onset, that the bulk phase diagrams
for argon, krypton, and xenon are essentially identical and all three elements are
f.c.c. in the solid state. The variation that occurs among the phase diagrams in Fig-
ure 4.28 is thus due to the interaction of the adsorbates with the substrate and each
other. The interaction involves weak attraction from the dispersion forces and hard
core repulsion, similar to Figure 1.1. Of the three phase diagrams, only xenon ex-
hibits a typical bulklike topology with regions of two-phase coexistence of gas (G)
+ liquid (L), gas + solid (S), and liquid + solid, in addition to a well-defined triple
point and critical point. The solid, however, is crystallographically incommensurate
with the substrate, as illustrated previously in Figure 4.16b. A similar incommensu-
rate solid (IS) is found for argon although its phase diagram lacks a region of sol-
id-liquid coexistence (or it is very small). Only krypton exhibits a legitimate com-
mensurate solid (CS) phase with a /3 x \/3 — 30° unit cell at low density (Figure
4.16a), but a transition to an incommensurate phase occurs at a higher coverage. In
addition, krypton does not appear to have a triple or critical point and the CS melts
directly to a fluid (F) phase. Thus, the substrate has a profound effect on the behav-
ior of these simple gases.

The qualitative difference between the krypton phase diagram and the other two
inert gas phase diagrams arises principally from an adsorbate-substrate size mis-
match effect. To see this, we can calculate the fractional difference between the in-
plane graphite lattice constant and the bulk solid phase lattice constants of argon,
krypton, and xenon. This quantity is commonly called the misfit 8 and is given as
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cp?:u“ :’.27 Reflection electron micrographs of the (1 x 1) = (7 x 7) transformation upon
ng :asr:apped silicon (111) surface. (a) Initial (1x1) structure and (bj{e) regions of (7x7)
m’"UCium" (dark) nucleate at the top of monatomic steps and expand across the terraces. The
arrows in (c).and (e) indicate the direction of growth and (f) shows the completed (7 x 7

Structure. Reprint
gtk :r?:s. ed from [61] with kind permission from Elsevier Science-NL, Amsterdam,

8="&:_' 4.21)

:::Z ;:I:l:s the lattice constant of the film or surface layer, and q, is the lattice con-
misfis (s : substrate. 'I;he values for argon, krypton, and xenon expressed in percent
o 100) are —8%, —5% and +8%, respectively. Therefore, the slightly under-

krypton atoms are able to form a commensurate surface layer by occupying
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mission of Cambridge University Press.

the hexagonal sites on the regular graphite lattice over a wide range of coverage
(Figure 4.28b). These sites are within ~5% of the.mmma of the krypton—ggton
interaction potential. This condition is less well umﬁed for the more undm ar-
gon and oversized xenon atoms, andtheymduceﬂlmmrwby'lgnomgthe favor-
able adsorption sites on the graphite substrate and adopting their own (natural) lat-
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tice constant. This feature has been confirmed by X-ray diffraction [10] and implies
that the surface layer ignores the substrate and essentially floats on top of the
graphite as though it were truly two-dimensional.

Another interesting aspect of the krypton—graphite phase diagram is the possibli-
ty of having a commensurate-incommensurate phase transformation with increas-
ing adsorbate coverage. In the vicinity of the C-I phase transformation, the krypton
surface layer can be viewed as a collection of commensurate regions separated by
localized regions of high atomic density called domain walls or solitons. (This is
analogous to the concept of dislocations in crystalline interfaces discussed in Part
IV) A schematic illustrating domain walls between three commensurate regions oc-
cupying A, B and C positions on the graphite substrate is shown in Figure 4.29.
Molecular dynamics simulations of the krypton—graphite structure at a density just
slightly in excess of the C-I phase boundary (© = 1.028) are shown in Figure 4.30.
The white regions in Figure 4.30 correspond to areas where the krypton atoms are
associated with a particular graphite sublattice. The dark regions are the domain
walls, where krypton atoms effectively straddle maxima in the graphite potentials,
as illustrated in Figure 4.29. At the low temperature shown in Figure 4.30a, the
commensurate domains are hexagonally-shaped. In contrast, at the higher tempera-
ture in Figure 4.30b, the domain walls are frayed and wander significantly as though
a fluid phase were creeping in between the CS and IS phases. As the temperature
continues to increase, the C-I transition proceeds in a gradual continuous manner
with the width of the domain walls increasing and the separation between the do-
main walls decreasing. Eventually, the entire layer disorders and becomes incom-
mensurate. This behavior is plotted in Figure 4.31. The transformation is continuous
with a critical exponent of approximately a third. Note the similarity of this behav-
ior to that of ledge roughening in Figure 4.10 and Eq. (4.15).

== SSZANTAN /AN
@;@%@S&réﬁ@ﬁ@ﬁ@
Vo 70 e s e AT DD,
a9N0 8 5V50 N
07070 8::%: @S
INAIQLAAR SO0
10599001010
A AN @@W@Wéﬁ@
Ol Awietwie
ﬁmnczm&mmmmaammwuuwmwMummuammmnmamuuumwmm
On graphite meet. From (10.,45] reprinted with the permission of Cambridge University Press.




108  SURFACE STRUCTURE

Figure 4.30. lllustrations of the crystallographic structure of two-dimensional krypton on
graphite obtained by molecular dynamics simulations of about one monolayer coverage. The

depicted rhombus is 62 nm on each side and the temperature is (a) 17 K and (b) 95 K. From
[10,63] reprinted with the permission of Cambridge University Press.

We have introduced the concepts of commensurate and incommensurate surface
layers, solitons and lattice mismatch (epitaxy) in order to understand the behavior of
surface layers. It is important to note that exactly the same types of interfaces and
defects exist when two different three-dimensional solids are brought together, but
they are often referred to by different names, mainly because the fields developed
independently. In the solid-solid phase transformations literature, commensurate in-
terfaces are called coherent, incommensurate interfaces are referred to as semico-
herent when there are regions of good atomic matching with misfit accommodating
defects in between (as in Figures 4.29 and 4.30), or incoherent when the atomic in-
teractions across the interface are significantly less than those within each of the
phases and any mismatch is spread evenly across the interface. The interface be-

tween the incommensurate layer of krypton on graphite discussed above can be
called an incoherent interface. The soliton in Figure 4.29 is replaced by a disloca-
tion in three dimensions. It is also worth emphasizing that whether the interface
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T, discontinuities occur in the thermodynamic variables as the symmetry abruptly
changes from that of a crystalline space group to the rotationally invariant state of a
liquid. A simple estimate of T}, comes from the Lindemann criterion [64,65], which
states that the crystal melts when the atomic mean square displacement due to ther-
mal vibrations <u®> is a significant fraction (~15%) of the lattice constant. As
demonstrated in Problem 4.12, in the Debye model,

<u?> = 3T, /mk T} (4.22a)

and thus

T,, = (constant) mT 3, (4.22b)

where m is the atomic mass, # = h/2w, and 4 is Planck’s constant, kg is Boltzmann’s
constant, and Ty is the Debye temperature. Equation 4.22b shows that the melting
temperature increases proportional to the atomic mass and Debye temperature. We
can rationalize this behavior in terms of a simple bonding model by noting that it
takes more thermal energy to move heavier atoms that are strongly bonded. Note
that this is the same relationship expressed in Figure 3.6 between the Debye temper-
ature and surface energy, which again relates back to the strength of the interatomic
bonds.

Diffraction experiments can measure the mean square atomic displacement di-
rectly because thermal vibrations attenuate the diffracted intensities by the so-called
Debye—Waller factor. Therefore, comparison of X-ray and LEED data for the same
specimen reveals the relative amplitude of thermal vibrations at the surface as com-
pared to the bulk. Typically, experiments of this type show that the thermal excur-
sion of surface atoms perpendicular to the surface is 50% to 100% greater than a

bulk atom at the same temperature. The lower value follows intuitively if we imag-

ine that a surface atom only experiences half of the restoring force of a bulk atom.

Simple application of the Lindemann criterion suggests that surface atoms

should disorder (melt) at a significantly lower temperature than the bulk melting
temperature. Further, if a disordered layer forms at the surface, then this layer

should exert a perpendicular restoring force on the second layer that is intermediate
between that of an ordered surface layer and the vacuum. Thus, the second layer
should melt at a slightly higher temperature than the surface but still lower than the

bulk. A similar argument applies to succeeding layers inward so that the melt front

propagates into the crystal with increasing temperature as each layer melts when its 4

Lindemann criterion is met, until the entire process is complete at T},..

Confirmation of this idea is shown in the molecular dynamics simulations fora
silicon (100) (1 x 1) surface using an interaction potential appropriate to silicon in

Figure 4.32 [10]. At moderate temperatures in Figure 4.32a, all the atoms in planes

parallel to a free (100) surface exhibit small harmonic displacements around their

equilibrium positions. At an elevated temperature still below the bulk melting point i

in Figure 4.32b, one clearly sees a disordered surface layer. It is interesting to note
that this layer is not completely disordered and that the underlying ordered layers in-
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Section 4.2.2. Thus, there is now strong theoretical and experimental evidence to
suggest that surface melting readily occurs on many solid surfaces. The mecha-
nisms by which melting occurs in bulk solids are less clear.

4.6. PARTICLE SIZE, SURFACE STRESS AND STABILITY

When a phase is small, the surface energy can have a significant effect on certain
thermodynamic properties of the phase. For example, the pressure inside a tiny lig-
uid drop or crystal is higher than in the surrounding vapor, increasing the vapor
pressure of the drop or crystal. Similarly, bumps or depressions on a surface have a
different internal pressure and vapor pressure than a flat surface. In this section, we
look at the effects of particle size and interface curvature on the properties of sur-
faces. These concepts apply to solid, liquid and vapor phases. For simplicity, we be-
gin our discussion by considering a liquid drop in equilibrium with its vapor and
then extend the discussion to include crystalline particles.

If we take the case of a spherical liquid drop, we can consider the surface energy
as a surface pressure that is exerted tangentially along the surface and then consider
the role of the external and internal pressures which act normal to the surface on its
properties, as illustrated in Figure 4.33. The difference in pressure between the in-
side and outside of the spherical drop can be calculated from a balance of forces on
the sphere. The net force F arising from a pressure difference is

F=4mrPP, — 4nrPy = 4 (P, - Po), (4.23)

where 472 is the surface area of the sphere, r is the radius, P,, is the pressure inside
the sphere and P, is the pressure outside the sphere. This force must be balanced by
the surface energy y' of the spherical surface. The work to enlarge the sphere by dr
is Fdr and must equal the surface work so that

Fdr = yVdA. (4.24)

y y

Figure 4.33. Section of a drop surface with internal pressure Py, external pressure P,,, radius
r and surface energy y. From [7].
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d4
Foy¥oe =ty (4.25)
and, from Eq. (4.23),
Py — Py =AP=2yY/r. (4.26)

If,quation (4.26a) is sometimes referred to as LaPlace’s equation. Since yY is posi-
tive, the pressure inside a small drop or particle is always greater than it is outside.
As an example, consider a drop of water 1 wm in radius at room temperature, where
y"¥ = 0.072 J/m?. From Eq. (4.26a), AP = 1.44x10 Pa or approximately 14 atm.
For a drop 0.01 um in radius, the pressure difference is 140 atm.

‘ N?w consider the case of a small single-component solid crystal in equilibrium
wnp its vapor. For simplicity, we assume that the solid particle is spherical and has
an isotropic surface stress /' (Eq. 3.12). The surface stress exerts a hydrostatic pres-
sure equsltoZﬂrwhich is added to the pressure of the vapor to equal the pressure of
the solid. Thus, the LaPlace pressure for the solid particle [2,3] can be expressed as

AP=2flr. (4.27a)

An equation very similar to Eq. (4.27a) can be derived for a cube of side |
this case, the surface area is 61° and of side length /. In

AP=2/l. (4.27b)

Equatf‘on (4.27b) show§ that the increased pressure inside a small crystal results
from its size and not directly from its surface curvature. This principle applies to
ffaceted crystals of any shape, although the situation is more complicated when dif-
cme:d crz:fml facets have different surface energies. Of course, the curvature of a
urved surface is related to its size. Thus, if a surface has two princi ii
e principal radii of cur-

AP=[(Uiry + Iy, 4.27¢)

Wh;re. for a sphere r, = r, and for a long cylinder, ry=oand AP = flr,
e:;ril:ng to t!Te case of a liquid drop, since the Gibbs free energy contains a PV
Crease in pressure P causes an increase in free en; G.F
e - o, o ergy G. From Eq. (3.13)

AG= VAP = Z‘wamfr, (4.28)

Where v, is the molar volume of the phase. This i
. ; free-energy increase from interfa-
Wmergymoﬁmknownuucapiﬂaﬁlyeﬁ‘ectmtheﬁibba—%psoneﬂ‘m.?\

Similar expression including the surface stress can be written for solids [2,3].
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Now let’s consider how a particular physical property may vary with the size of a
droplet. A simple case to treat is the vapor pressure of a drop with radius of curva-

ture r. If we transfer atoms from the liquid droplet to the surrounding gas phase,
there is a small and equal equilibrium displacement on both sides of the interface

dP, - dP, = d(2yY/r), (4.29)

where Py, again refers to the droplet and P, to the surrounding vapor. At constant
temperature, the free-energy change associated with the transfer of atoms across the
interface is given by

dGh, - Vind'Pia (4-303)

and

dG, = V,dP,,. (4.30b)
At equilibrium, the free energy changes, are equal and we have

VadPip = Vo dP,,. (4.31)
Substituting Eq. (4.29) into Eq. (4.31) and rearranging yields

(Vex = Via)dPrl Vi = d(2¥YIr). (4.32)

If we neglect the molar volume of the liquid with respect to the much larger molar

volume of the gas and assume that the vapor behaves as an ideal gas, then

V..=RTIP,, (4.33) '

and substituting this into Eq. (4.32) gives

APy /P = 2y V,/RT d(1/r). 4.34)

We can now integrate Eq. (4.34) between the limits of a flat surface with zero cur-
vature (1/r = 0, P = P;) and some other state corresponding to a curved surface (1/7,
P() and assume that the molar volume of the liquid remains unchanged along this

path. We obtain

which is known as Kelvin's equation. It describes the dependence of the vapor pzu-
sure of any spherical particle on its size. From Eq. (4.35), we see that small particles
have a higher vapor pressure than large particles. This feature has two impo:

consequences:
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I. When there is a range of droplet sizes, the larger particles will grow at the
expense of the smaller ones. This process is known as particle coarsening.
Coarsening is important in many applications [67).

2. If a drop satisfying the above equation is in equilibrium with an infinite vol-
ume of vapor, this equilibrium is an unstable one. If the drop shrinks by evap-
oration then r decreases. P,,, for equilibrium then increases above P, existing
in the vapor phase and the droplet evaporates completely. If the drop grows
shghtl)lr by condensation then r increases, Now Py for equilibrium is less than
the existing P, and the droplet tends to grow further. This concept of a
droplet of given radius being in unstable equilibrium with a vapor at pressure
Py > Py forms the basis of the capillarity theory of nucleation, a very impor-
tant process.

' .An expression analogous to Eq. (4.35) has been derived for the change in solu-
bility of a'drop or particle in a two-phase system as a function of its size [2,3,68].
Small particles have greater solubility than large particles and the increased solubil-
ity can be quite substantial in the size range of 1-10 nm,

If we consider the effect of curvature on the equilibrium temperature of a liquid
drop, we obtain the following equation,

In(T/To) = ~Q2y™V,/rAH,), (4.36)

where T fs the temperature, the subscripts have the same meaning as in Eq. (4.35)
and AH, is the :.uolar heat of vaporization. This is known as the Thompson equation.

with the bulk phase.
The effects mentioned above have particular relevance in current technology,
- . - 2
where material stmctures and devices are being fabricated at the nanometer level

%lmﬂmnlOnminaizc.ThcsolidcurveshawninFism4.34wuealculated
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Figure 4.34. Melting temperature of small gold particles as a function of size. Reprinted from
[71] with kind permission from Elsevier Sclence-NL, Amsterdam, The Netherlands.

3 23
Ty _ 1 -2y8R M , 4.37)

where Ty, and T, are the melting temperatures of the particle of radius  and
bulk, respectively, 5 and ¥}, are the molar volumes of the solid and liquid, respec-
tively, yS¥ and y" are the surface free energies of the solid and liquid, respectively,
and the other symbols have the same meanings as before [70]. This equation is sim-
ilar to the Thompson equation (Eq. 4.36), but it includes contributions from the sur-

face energies and molar volumes of both phases. It gives relatively good agreement

with the experimental data except at the particle sizes where the effect is most pro-
nounced. This difference has been attributed to the limitation of applying macro-
scopic thermodynamics developed for relatively large particles to atomic clusters. A

microscopic approach has been developed that is able to more correctly account for
the behavior of very small clusters [72]. We do not explore this approach here but
instead look briefly at a few interesting properties of very small particles (nanocrys-

tals).

mensional close-packed clusters shown in Figure 4.35. The crystal on the left with

radius », contains nineteen atoms, with twelve on the surface and seven in the interi-
or. The crystal on the right with r; < r, consists of seven atoms, with six on the sur-

face and only one in the interior. As evident from Figure 4.35, the ratio of the num-

ber of surface atoms to interior atoms increases as the the particle size decreases;
that is, the surface-to-volume ratio increases as the radius decreases. Because the

So far, we have used macroscopic thermodynamic arguments to quantify the
lowering of the melting temperature shown in Figure 4.34, but we can also rational-
ize this behavior using a nearest-neighbor bonding argument and considering the
surface-to-volume ratio of very small clusters. For example, consider the two-di-
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S m————

Figure 4.35. Two-dimensional illustration of two atomic clusters with radius r, < r,.

su'rface att?ms have more broken bonds than atoms in the interior (three versus six in
this two-dimensional sketch), the free energy per unit volume of the particles in-
creases as they become smaller. The small particle on the right has a higher free en-
ergy per unit volume (or atom) than the larger particle on the left. Hence, this parti-
cle is inherently less stable and will melt at a lower temperature than the large
particle. In other words, on average it takes less energy per atom to separate the
atoms in the small crystal compared to the large crystal, so the melting temperature
is lqwer. In a complementary manner, we can also rationalize the melting of small
particles at lower temperatures using the concept of surface melting discussed with
reference to Figure 4.32,

The inherent instability of very small clusters because of their high surface area
has lgeen ol?served experimentally by HRTEM [73). For example, Figure 4.36 shows
a series of images of the same gold particle sitting on a SiO, substrate taken at 1/30-
sec thnvals. Exammamn of the atomic structure of the cluster shows that it is dif-
fel:ent in ench image, varying from a cuboctahedra (Figs. 4.36¢,e,£k) to single twins
(Fig. 4.36a,d,i) to multiply twinned particles (Figs. 4.36b,h,1). In this case, the ener-
gy ot: the electron beam is sufficient to cause the particle to rapidly fluctuate among
a variety of structures, ranging from highly crystalline to almost liquidlike. This be-
havior has been called quasimelting [74] and is due to the high surface-to-volume
fatio of the small crystals. Also notice the atomic terraces and ledges parallel to the
¢ kec.l{lll}'planesinimagesmchasFigtmiSGamdc.

. Another interesting dependenee on particle size is shown in Figure 4.37. This

1gure shows t!le average lattice constant of small gold crystals as a function of their
recnproca_l rn-dms [75]. What is particularly interesting about this study, is that the
Straight line in Figure 4.37, found by a least squares fit through the data, represents
an interpretation of the experimental results in terms of the equation

SV = _3rAa/2%Baq, (4.38)

Where £ 3V = 1.175 N/m is the surface stress in the radial direction (which i
| ch is equal to
WP.WhmP:sﬁehy&mhﬁcmm&wmmolphereofmdiusr)wznthe
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Figure 4.36. A series of HRTEM images showing various shapes of a gold cluster containing
approximately 460 atoms. The images are single frames (1/30 sec) taken from a videocassette

recording and the viewing direction is often along <110>. From [73].

bulk modulus for gold of B = 5.99x10~'2 m?*N and lattice parameter a = 0.4080
nm, appropriate to gold at 50°C are employed. The value Aa is thus the change in
lattice constant due to the surface stress. Since the specific surface free energy is by
definition constant, the contraction of the lattice with decreasing particle size and
hence the accompanying decrease in f;, is due to the surface stress.

When the value of 1400 mJ/m? was used for the bulk surface energy of gold, that
is, G* in the temperature range of 1017° to 1042°C, and an expression similar to Eq.
(3.15) was used to extrapolate this value to 50°C, the experimental results were tak-
en to indicate that the surface stress in the radial direction is negative with a numer-
ical value of approximately 0.60 N/m. This is consistent with the discussion in Sec-
tion 4.4 (Fig. 4.17), which indicated that atoms exposed to a surface should contract
inward, generating a radial compressive stress in small particles. Hence, these ex-
perimental and theoretical analyses allow us to understand the influence of particle
size on the surface stress. They also demonstrate that the magnitude of the surface
stress can be significant in small particles where the number of atoms at the surface
constitutes a large portion of the total number atoms in the particle.
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Flgui_*e 4.37. Average lattice constant of gold crystals as a function of their reciprocal radius.
Reprinted from [75] with kind permission from Elsevier Science-NL, Amsterdam, The Nether-
lands.

In our discussions of surface relaxation and surface stress, we considered the
contraction of atoms normal to the surface, and we envisioned the surface stress as
acting tangentially along the surface, but we did not compare values for y5Y, /S or
dy*V/de,,. Table 4.5 shows values of the surface stress and surface energy for unre-
constructed (111) and (100) surfaces of various f.c.c. metals calculated using EAM
potentials [76]. In all cases, the surface stress is positive and generally higher for the
less dense (100) surface than for the close-packed (111) surface. In the case of sil-

Table 4.5. Calculated surface free energy y*¥ and principal surface
stress /%Y for clean, unreconstructed f.c.c. metal surfaces using

EAM potentials
Surface ¥V (J/m?) S (Jm?)

Ni (100) 1.57 127
(111) 1.44 0.43

Cu (100) 1.29 1.38
(111) 1.18 0.86

Ag (100) 0.70 0.82
(111) 0.62 0.64

Au (100) 0.92 1.79
(111) 0.79 1.51

Pt (100) 1.64 2.69
(111) 1.44 2.86

Source: From [76].
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ver, 3V and ySV are similar in magnitude so that dyV/dey is small, particularly for
the (111) surface. In the case of nickel and copper, /SV is less than ¥V so that
dySV/de, is negative, wherease for gold and platinum, /5V is greater than y5V so that
dySV/dey is positive. In both cases, the magnitude of dySV/dey, is often as large as ei-
ther ysv or fsv_

An interesting comparison of the specific surface free energies and surface
stresses of the (111), (100) and (110) surfaces of a Lennard-Jones crystal as a func-
tion of temperature was performed using molecular dynamics by Broughton and
Gilmer [77]. Some of their results are shown in Figure 4.38. The surface free ener-
gies y3V of the three crystal faces at low temperatures in Figure 4.38a are ordered
exactly as expected from our earlier broken-bond model. The surface free energies
decrease with temperature and become nearly equal (within the range of experimen-
tal error) for temperatures within about 10% of the melting temperature, as we ex-
pect from our previous analyses. In contrast to this behavior, the surface stresses fSV
forthethreecrystalfacesinFigure4.38bmhigh!yanisotmpic,andthisaniwuopy
persists up to 7;,. The stress in the (100) face is positive (tensile), whereas the
stresses in the (111) and (110) faces are negative and approach a common value
near Ty,,. The large compressive stress in the (111) face indicates that /5V is negative

and larger in magnitude that ySV. These results emphasize the anisotropic character

of the surface stress and illustrate their importance, but it is difficult to obtain inde-
pendent measurments of the surface stresses experimentally.
Before we leave the subject of surface stresses, we consider the issue of the mor-

phological stability of a surface under stress. We only look at the end result of the

analysis rather than to derive the results, since we will perform a more thorough de-
velopment of the stability of a solid-liquid interface in the next part. At this time,
we only show that solid surfaces may be unstable in the presence of a stress. This
situation is particularly important in thin-film technology, where thin films on thick
substrates are often left in a state of residual stress after fabrication, due to misfit
(Eq. 4.21) and differential thermal contraction.

A simple energetic anaysis can be used to illustrate the possible origin of a sur-

face instability under an applied stress [78]. Consider the simple square-wave sur-
face morphology shown in Figure 4.39, where the sample is stressed in the x direc-

tion. The change in energy in going from a flat surface to that shown in Figure 4.39
is roughly

AE = (-0%/2Y)(cN2) + 2¢y8Y, (4.39)

where o is the stress in the bulk, ¢ is the wave amplitude, X is the wavelength, ySVis

the surface energy, Y is Young’s modulus and it has been assumed that the stress is
zero in the interior of the square protrusions. Equation (4.39) shows that the forma-

tion of this rough surface-profile lowers the energy of the system provided that the

wavelength A > 8y5VY/o2. Although this analysis is crude, it indicates why the sur-
faces of stressed bodies may be unstable.

A more rigorous kinetic stability analysis [78] demonstrates that initial flat sur-

faces bounding elastically stressed solids are unstable with respect to the formation
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Figure 4.38. (a) The excess surface free energy versus temperature and (b) the surface stress
Versus temperature, for the (111), (100) and (110) surfaces of an LJ crystal. Tensile stresses
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the plots. Reprinted with permission from [77) by Elsevier Science Ltd., Oxford, England.
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Figure 4.39. A solid with a square wave surface profile. The surface profile has wavelength X
and amplitude ¢/2. Reprinted with permission from [78] by Elsevier Science Ltd., Oxford, Eng-
land.

of sinusoidal surface undulations (as opposed to a square wave profile) of wave-
length greater than a critical wavelength A.. That wavelength and the maximally un-
stable wavelength \,,, were determined considering two reasonable types of matter
transport on a surface; namely, surface diffusion, where mass transport occurs by
atoms migrating across the surface, and evaporation-condensation, where atoms
evaporate from the surface, migrate throught the vapor phase and condense at an-
other location [79]. Although neither A, or A, depend on the magnitude of the
transport coefficients, the rate at which perturbations of those wavelengths grow
does. The results of these analyses are summarized in Figure 4.40. In the case of
surface diffusion, a band of unstable sinusoidal modes exists with wavelengths A
(=2w/k) > A, (=n¥y5V/0?) and with the most unstable mode at A = A, = 4/3\,,
where Y is the elastic modulus appropriate to the local surface orientation. These re-
sults imply that perturbations of wavelengths smaller than \, are smoothed by sur-
face diffusion, whereas long wavelengths grow unstably. As it turns out, the value of

1

Evaporation-
Condensation

Growth Rate

Figure 4.40. The exponential growth rate for surface perturbations of wavenumber k (= 27/A).
The two curves are for surface diffusion (sd) and evaporation—condensation (ec) controlied

growth. Perturbations with wavenumbers between 0 and k, are unstable, and the maximally
unstable modes (A, are indicated for each growth process. Reprinted with permission from

(78] by Elsevier Science Ltd., Oxford, England.

PROBLEMS 123

Amax in the more rigorous analysis is within a factor of two of that given by A in Eq.
(4.39). In the case with evaporation—condensation as the transport mode, a similar
band of unstable modes exists but with the most unstable mode at A = Amax = 2\,
Thus, although the smaller unstable wavelength is the same in both cases, the wave-
length corresponding to the maximally unstable mode is 50% greater for the case of
evaporation—condensation. These results demonstrate that surfaces of elastically
stressed solids are unstable with respect to perturbations of wavelength greater than

Ae = w¥ySV/o2, (4.40)

There are recent experimental data available for silicon-germanium alloy layers
grown on silicon which suggest that this analysis is reasonable [80]. It has been in-
cluded here to emphasize that a solid surface can be unstable in the presence of sur-
face energies and stresses. We will see that the same concepts are applicable to sol-
id-liquid and solid—solid interfaces, and there is ample experimental evidence to
confirm the analysis in these cases.

PROBLEMS

4.1. (a) Calculate the surface energies of the {111}, {100} and {110} planes of
gold using the nearest-neighbor broken-bond model.

(b) Use Eq. (4.1) to plot the anisotropy of the surface energy for gold at 0 K
from the low-energy {111} plane to the vicinal {332} plane. Explain the
behavior of these results physically.

(¢) How would your results in (a) and (b) differ if lead was used instead of
gold?

4.2. (a) Use the data for lead in Figure 3.16 and Egs. (4.2) to determine the value
of E,, the excess enthalpy per unit length of ledge in Eq. (4.1), for the
{100} and {111} surfaces.
(b) Calculate E, for the same ledges, assuming a simple nearest-neighbor
broken-bond model and compare your results with those in part (a).
4.3. Let the crystal in Figure 4.7 be a {111} f.c.c. silver surface with ledges that
lie along a <110> direction.
(a) Calculate the excess energy for each state shown in Figure 4.7 relative to
a kink atom assuming a nearest-neighbor bond model.
(b) Calculate the probability of finding a surface vacancy-adatom pair rela-
tive to a kink at 7= 0, 100 and 1000 K.
(c) Repeat the same calculation for a ledge vacancy-adatom pair relative to a
kink atom.
4.4. Assuming a two-dimensional simple-cubic crystal structure, construct an
atomic model of the crystal in Figure 4.12a for 0 < 7' < T.. It is only necessary
toaketchonequadmntofﬂwmhl.Makethhemerissmoom]y
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[10]).The open and filled circles represent substrate and adsorbate atoms, re-
spectively. The primitive translation vectors of both the substrate (dashed
lines) and surface layer (solid lines) are also indicated.

(a) Write the surface designation for each structure shown.

(b) Find the adsorbate coverage for each of the three surfaces.

rounded as shown in the figure. Does your model explain the deep cusp at 6 =
45° in Figure 4.12b?

4.5. How would Egs. (4.9a,b) differ if relaxation occurred around the vacancies or
if there was a finite binding energy between the divacancies?

4.6. The three figures below show examples of commensurate surface layers on
(@) bec. (110), (b) fe.c. (100) and (c) h.c.p. (0001) substrates (from 4.7. A {111} copper surface is initially covered with 19 adsorbed copper atoms
per square centimeter. If it can be assumed that the bonding in the system can
be described by the nearest-neighbor model:

(a) Calculate the change in energy per square centimeter if these adatoms ac-
crete to form hexagonal islands of 19 atoms each.

(b) As the island size increases, how does the average number of bonds per
atom change?

4.8. The two figures below (from [81]) show snapshots from Monte Carlo calcu-
lations of gold segregation to the: (a) {100} and (b) {111} surfaces of copper
in a dilute copper—gold alloy. Use Figure 4.14 to determine the surface struc-
ture.

(a)
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4.9. The figure on page 126 (from [53)) is a perspective view of a silicon (100)
surface with single-layer high steps and terrace atom dimer orientation shifts
on alternate layers.

(a) Ifa type A terrace is defined as one in which the atomic rows are parallel
to the step edge and a type B terrace is one in which the atom rows are
perpendicular to the step edge, identify the two terraces in the figure.

(b) Assuming that Figure 4.22b is a view normal to the terraces shown on
page 126, show the orientation of the [110] direction in Figure 4.22b.

4.10. Use the atomic model of the gold (110) (1 x 2) reconstructed surface at the
top of Figure 4.20 and a nearest-neighbor bond model to calculate the surface




126

4.11.

4,12,
4.13.

4.14.

SURFACE STRUCTURE

energy of the reconstructed surface, assuming it is composed of {111} facets
three atoms wide. Compare the resulting surface energy with that of an unre-

constructed {110} surface determined by the nearest-neighbor bond model.
Explain your results.

Given that the lattice parameter of graphite is 0.426 nm, calculate the misfit &
of argon, krypton, and xenon on graphite, using the lattice parameters of the
f.c.c. solids or the atomic radii of the elements.

Using Egs. (1.8), (1.11) and (1.16), derive Eq. (4.22).
(a) Derive Eq. (4.26b).

(b) Do you agree with the statement that: “The vapor pressure of a smsli
cube, in contrast to a sphere, has the same value as that of a flat surface.” -

Why or why not?

(a) Derive Eq. (4.36) for the effect of curvature on the equilibrium tempera-

ture of a small particle.

(b) Calculate the melting point of a small, spherical indium crystal 10 cm
in diameter. Assume that the surface energies of both solid and liquid in=_
dium are 500 mJ/m? at the melting point and independent of crystallo-
graphic orientation. The melting point of indium is 156.6°C. The ¢ ensi-
ties of the two phases are pt = 7.02 g/em? and p® = 7.31 g/cm’, and the |

atomic weight is 114.8 amu. The heat of fusion is 6.07 kJ/mol.

CRYSTAL GROWTH
FROM THE VAPOR

In this chapter, we develop expressions that enable us to describe the growth rate of
a solid-vapor interface under two limiting conditions. In one, we imagine that
atoms arrive at the surface from the vapor and stick wherever they land. Thus, the
surface grows continuously as fast as the atoms are transported through the vapor
phase. In the second limiting case, we have a vicinal surface and the atoms must be
transported through the vapor to a terrace, migrate across the terrace to a ledge and
then attach at a kink in the ledge for the crystal to grow. This situation is more diffi-

~ cult to describe quantitatively, but it is a very interesting process and is often the

n_aode of cm growth Hence, it is important that we develop quantitative expres-

sions to descltlbe ll.ns'process. The concepts and models that we develop here can be

eoqaparetli v}qlh similar treatments that we will develop for solid-liquid and

whd—folld interfaces in the following chapters, to see the similarities and differ-
ences in the growth behavior of these different interfaces.

We begin this section by first examining the situation where a surface Zrows uni-

as fast as atoms arrive at the surface. We then look at possible sources of

on a surface and include a brief discussion of nucleation theory. Having done

2 "“0, we develop equations for the velocity of an individual ledge and a surface con-

an array of l_edges..Wc also treat the case of a continuous source of ledges, as
al a screw dislocation. We compare these different growth modes and then

™ on net: ; discussion of alloys in Chapter 6 and wetting between different phases
5.1. CONTINUOUS GROWTH

“" impingement rate or flux of atoms (or molecules) of a gas onto a solid surface
’*POIed_-.- to the gas is given [33] by the expression
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